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Brain Anatomical Structure ParsingBrain Anatomical Structure Parsing

Some cortical structures: 
major sulci curves

Some sub-cortical 
structures



Why is the task important?Why is the task important?

SubSub--cortical and cortical structures are of cortical and cortical structures are of 
great anatomical and clinical importance.great anatomical and clinical importance.
Their shapes provide viable information about Their shapes provide viable information about 
brain growth and various diseases.brain growth and various diseases.
We can use these anatomical structures as key We can use these anatomical structures as key 
landmarks to register different brain images landmarks to register different brain images 
for us to study the brain atlas and statistical for us to study the brain atlas and statistical 
properties.properties.



Element of a diseaseElement of a disease--specific atlas specific atlas 
((Thompson and Toga 2004Thompson and Toga 2004))



Mapping Mapping hippocampalhippocampal change in change in 
Alzheimer disease Alzheimer disease (Thompson et al. 2004)(Thompson et al. 2004)



Cortical thickness mapping in Cortical thickness mapping in 
Williams Syndrome Williams Syndrome (Thompson et al. 2005)(Thompson et al. 2005)



Challenges for Manual AnnotationChallenges for Manual Annotation

1. Large volume size for high resolution 3d MRI. (a typical size of
300x300x300)

2. Complex protocols for different cortical and sub-cortical structures.

3. Lack of efficient 3D tools for annotating the anatomical structures.

4. Hard to guarantee consistency among different neuroanatomists.

5. It is very time-consuming to fully delineate the brain anatomical structures 
even for a single volume. (It usually takes weeks or even months.)



Complex ProtocolsComplex Protocols

http://www.loni.ucla.edu/~esowell/edevel/new_sulcvar.html



Challenges for Automatic SegmentationChallenges for Automatic Segmentation

1. Large volume size for high resolution 3d MRI. (a typical size of
300x300x300)

2. Very weak intensity patterns. (large inter-class similarity and intra-
class variation)

3. Hard to capture 3D shape info due to the high dimension space and 
limited number of training data.

4. Hard to capture the high-level knowledge and adapt to different 
protocols.



FrameworkFramework

Annotated 
Database

Learning based approaches to capture 
complex appearance models by 
integrating a large number of cues 
(intensity, curvatures, gradients)

Global shape prior.

A 3D representation to efficiently 
perform surface revolution.

To learn a hybrid discriminative/generative model to 
capture local and global shapes, and complex appearances.



A Learning Based ApproachA Learning Based Approach
A learning based algorithm to perform efficient A learning based algorithm to perform efficient 
and effective brain structure parsing.and effective brain structure parsing.
The algorithm implicitly and explicitly combines The algorithm implicitly and explicitly combines 
hundreds of features to model complex objects.hundreds of features to model complex objects.
It is up to the learning procedure to learn It is up to the learning procedure to learn 
protocols from examples, and is highly adaptive.protocols from examples, and is highly adaptive.
Has nearly no parameters to tune.Has nearly no parameters to tune.
Explicit 3D representation can represent Explicit 3D representation can represent 
arbitrary number of regions and perform fast arbitrary number of regions and perform fast 
surface evolution.surface evolution.
Has the potential to outperform human experts.Has the potential to outperform human experts.



Bayesian ModelBayesian Model
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It is very hard to learn and 
compute the likelihood p(V|W) 
and prior p(W).
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Discriminative v.s. GenerativeDiscriminative v.s. Generative

{

For a data sample: and its class label:

Positives, y=+1 Negatives, y=-1

Discriminative model:

Generative model:

?



Discriminative Discriminative v.sv.s. Generative Models. Generative Models

•Discriminative models are easier to learn/compute.

•They are focused on discrimination and marginal 
distributions.

•Its modeling power is limited since y is just a label.

•If you are asking, “Where are the lymph-nodes?”, 
then you would probably want to use discriminative 
methods.

•Generative models contains richer information.

•They are focused on single class.

•They explain the underlying generation process.

• If you are asking, “Find bone regions and describe 
their shapes.”, then you would use generative 
methods.



Discriminative ModelsDiscriminative Models
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Discriminative (classification) model based on a local 
volume patch.

(1) It is capable of capturing complex appearance model 
based on a large context.

(2) Has much more representational power than i.i.d models.

(3) Easy to learn and compute than a full generative model. 



Probabilistic boosting trees Probabilistic boosting trees (Z. Tu, ICCV 2005) (Z. Tu, ICCV 2005) 



FeaturesFeatures
Around 10,000 features in the candidate pool: Gradients, Curvatures, Haars

(1) Very fast to compute using integral volume.

(2) Combine information at different scales.



Discriminative ModelsDiscriminative Models
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Shape PCA PriorsShape PCA Priors
1. Building priors on 3D shapes is challenging.

2. Signed distance maps give an easy implementation.

SUS += α TVUQ Σ=

mean mean - σ mean + σ
mode 1

mean - σ mean + σ
mode 2

mean - σ mean + σ
mode 3

synthesis (random samples)



Hybrid Discriminative/Generative ModelsHybrid Discriminative/Generative Models
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3D Representation3D Representation

X-Y plane3D grid-face representation
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The AlgorithmThe Algorithm
Training (given a set of annotated volumes): 

(1) Learn multi-class classification model using PBT.

(2) Learn PCA shape model for each structure.

Testing (given a volume) 

1. Compute classification using learned PBT.

2. Obtain the initial segmentation.

3. Perform region competition based on the proposed 
3D representation.
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ResultsResults

Step=1

Step=2

Step=2



Results on The Training DataResults on The Training Data

Manual annotation

Automatic segmentation



Results on The Training DataResults on The Training Data

Manual annotation

Automatic segmentation



Results on The Testing DataResults on The Testing Data

Manual annotation

Automatic segmentation



Results on The Testing DataResults on The Testing Data

Manual annotation

Automatic segmentation



EvaluationEvaluation
precision  recall
0.694       0.779
0.675       0.715
0.856       0.853
0.835       0.849
0.785       0.701
0.779       0.781
0.914       0.817
0.910       0.815

Left Hippocampus
Right Hippocampus
Left Caudate
Right Caudate
Left Puteman
Right Puteman
Left Ventricle
Right Ventricle

6.638   10.384
9.975   11.863
6.610   7.899
4.988   8.606
10.441   10.343
8.552   9.673
5.592   16.007
6.022   13.915

Hausdorff distances
1.872   0.532
2.213   0.517
1.303   0.244
1.332   0.361
2.474   0.780
2.006   0.390
1.117   0.386
0.994   0.131

mean variancetraining

precision  recall
0.686       0.766
0.620       0.644
0.842       0.806
0.811       0.825
0.746       0.682
0.751       0.721
0.904       0.808
0.897       0.813

Left Hippocampus
Right Hippocampus
Left Caudate
Right Caudate
Left Puteman
Right Puteman
Left Ventricle
Right Ventricle

6.729   12.082
14.284   13.576
7.961   8.123
6.694   8.525
10.155   10.594
10.079   9.443
6.345   11.432
6.904   14.675

Hausdorff distances
2.039   0.365
2.835   1.105
1.463   0.327
1.443   0.290
2.606   0.832
2.377   0.762
1.102   0.260
1.097   0.239

mean variancetesting



Automatic Sulci DetectionAutomatic Sulci Detection

Tosun, et al. 2005



boosting

boosting

PBTPBT



True Prob Result

Results on Training set: Central sulcus

ResultsResults



True Prob Result

Results on Testing set: Superior Frontal sulcus

ResultsResults



True Prob Result

Results on Training set: central sulci on surface

Results on SurfacesResults on Surfaces



EvaluationEvaluation

1. It is a general framework and it works either on MRI volumes or 
extracted surfaces.

2. There is nearly no parameter to tune and learns the discriminative 
models from examples.

3. Does not need to specify which major cortical sulcus.

4. No segmentation is needed, nor the process of mapping to a canonical 
view.

5. The algorithm is robust and fast.


